DAMAGE DETECTION FOR APPLICATIONS UNDERGOING AXIAL
(MEMBRANE) RESPONSE

T. A. Duffey*, C. R. Farrar®, and S. W. Doebling’

*Consulting Engineer
P.0.Box 1239
Tijeras, New Mexico 87059
USA

ABSTRACT. This paper extends and applies recently
reported damage identification methods, previously utilized for
flexural vibrations only, to axial- and membrane-type vibrations.
The methods are applied to an 8-DOF linear spring-mass
system, which models a multidegree-of-freedom axial or
membrane system. The goal of the work is to detect damage (as
indicated by reduction in stiffness of one or more of the
elements) as well as to locate the damaged elements. Two
damage detection methods were investigated: the ‘change-in-
flexibility’ method and the ‘damage-index’ method. Both were
found to successiully locate the damaged element(s) for 10-
percent reduction in element stiffness. The ‘change-in-flexibility’
method indicated damage location even when only a limited
number of lower modes were included.

NOMENCLATURE

a :Axial position along span

AE  :Axial rigidity

El  :Flexural rigidity

g« :Axial rigidity ratio for " mode shape and k™ region

k= :Stifiness of i element

0 :Span of structure

m_ :Mass of i" element

n :Number of measured or calculated modes
U Strain energy

u ‘In-plane displacement

w  :Transverse displacement

X :Axial Coordinate

a, Damage index

5, :Elements of change-in-flexibility matrix
)\,— ;i eigenvalue

W, " frequency of vibration

[F1 :Flexibility matrix

[K] :Stiffness matrix

[M] :Mass matrix

(@} : mode shape

W] :Mode shape matrix

[AF] :Change-in-flexibility matrix

[Q] :Modal stiffness matrix

{$,} " mass-nomalized mode shape
[®] :Mass-nomalized mode shape matrix
[T :Transpose

[T :Inverse

()" :Property of damaged structure
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1. INTRODUCTION

A wealth of damage identification algorithms exist for detecting
damage as well as its location in structural and mechanical
systems [1,2]. Often these methods are applied to structures,
such as bridges, undergoing flexural vibrations. However, it
appears that use of such methods for applications involving axial
of membrane-type vibrations is limited. Damage detection in
truss structures exhibiting bending, torsional, and axial modes is
discussed in [3,4].

The purpose of this paper is to extend and apply recently
reported damage identification methods, previously utilized for
flexural vibrations only, to axia-type vibrations. Two such
methods are investigated in detail: The ‘change-in-flexibility
method and the ‘damage index’ method. The methods are
applied to an 8-DOF linear spring-mass system, which models
amulti-degree-of-freedom axial or membrane system. The goal
of the work is to detect damage (as indicated by reduction in
stiffness of one or more of the elements) as well as to locate the
damaged element(s).

As a starting point, a complete set of natural frequencies and
normal modes were determined numerically (MATLAB [6] was
used in all studies reported herein) and then corresponding sets
of modal properties were determined for eight simulated cases
of “damage”. Damage consisted of a 10 percent independent
reduction of stiffness in each element. Not surprisingly,
detection of damage by comparison of either natural frequency
or mode shape changes between undamaged and damaged
cases was generally unsuccessful. Further, no information could
be gleaned on damage location using this primitive damage
detection approach. More robust methods were then extended
to this axial vibration problem.

The ‘change-in-flexibility’ method [6] is based upon differences
in the flexibility of the structure before and after damage has
occurred. For the flexural vibrations of beams, Pandey and
Biswas show that damage could both be detected and located
from just the first two (or three) measured modes of the
structure. The method differs somewhat from the more familiar
methods of damage detection based on changes in the modal
parameters of a system (i.e., resonant frequencies, mode
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shapes, and modal damping). The authors are unaware of any
application of the method to problems involving axial loading.

This “change-in-flexibility method was applied to the 8-DOF
spring-mass model and found to be particularly robust in both
the detection of the presence of damage as well as the location
of the damage. The location of damage is directly indicated by
a step change in a flexibility indicator at the point of damage.
Further, the magnitude of this indicator does not depend upon
damage location, in contrast to earlier work on beams reported
in [6].

Because in application there is a distinct possibility of damage at
more than one of the elements, the case of simultaneous
damage at more than one element location was investigated as
well. The ‘change-in-flexibility method was found to isolate two
separate damage locations.

The above investigation was performed numerically using a
complete set of vibration modes. In practice, only a partial set of
the lower modes may be available. The influence of including a
partial set of modes was investigated for the case of damage at
the center element. For 10-percent reduction in element
stifiness, it was found that the location of damage was clearly
indicated using only the first mode. Further, for the particular 8-
DOF example evaluated, a reasonable estimate of the magnitude
of the damage indicator was provided using the first vibration
mode only. Inclusion of the first three modes was sufficient to
estimate the damage indicator (flexibility change) within a few
percent.

The medification of the Damage-Index method [7] to treat axial,
as opposed to bending, problems is also presented. Using the
same 8-DOF system with and without damage, the location of
damage was readily determined for the case in which complete
sets of normal modes were used.

2. FREE VIBRATION MODEL

Consider the linear 8-DOF spring-mass system shown in Fig. 1,
for which free vibration response is described by solution of the
generalized eigenvalue problem,

(KI{wi} = A MK} (1)
where A, = mf. Here [M] denotes the diagonal mass matrix, [K]
is the (symmetric) stifiness matrix, A is the ith eigenvalue (square
of the ith natural frequency) and {y;} denotes the ith eigenvector

(ith mode shape). If [M] is the identity matrix, Eq. (1) reverts to
the standard eigenvalue equation [8].

By inspection of Fig. 1, the mass matrix is

m, 0

m,

(2)

The stiffness matrix, [K], can be readily determined to be the
following banded 8 x 8 symmetric matrix:

tkyk) -k, O O o o o
K Ugtk) <k, 0 o o o
0 Kk (k+tk) -k O O 0 0O
0 0 -k (kek) -k, O 0 O
M=o o o0 & (k) -k 0 O
6 0 0 0 -k (ketk) Kk O
°o o o Ky (Kyvkg) K
°©o o o o 0 kK
)
241 Baseline Case

For illustrative purposes, consider a baseline 8-DOF systemn of
unit masses and stiffnesses:

m 1l fori =18

k o=1fori=18 @

where m; and k are the mass and stiffness values defined in
Fig. 1.

The seight eigenvectors and corresponding eigenvalues for the
generalized eigenvalue problem are readily determined
numerically [5]. The natural frequencies can be written as [9):

W, = -1—sin

(2i-1)
o 17

,i=1,2 ..,8 (5)

22 Introduction of “Damage”

Now each of the eight stiffnessss, k;, is individually reduced 10-
percent to a value of 0.9 to simulate damage i.e., there are 8
separate cases of damage considered. A plot of natural
frequency as a function of mode number for the baseline system
and the eight perturbed systems is shown in Fig. 2. Clearly,
identification of damage by changes in natural frequency is not
feasible, as a 10-percent stiffness change at one location results
in almost negligible natural frequency changes for normal
modes.

The effects of stiffness perturbations on mode shape changes
are illustrated in Fig. 3. Fig. 3a shows the normalized modal
displacement of the first mode for the baseline unperturbed case
as well as the eight perturbed (10-percent reduced stiffness)
cases. Fig. 3b is the corresponding set of plots for mode 8.
Generally, it was found that the four highest modes do seem
somewhat more sensitive to stiffness perturbations. In some
cases, the percentage change can be quite substantial for
ndividual degrees of freedom. Unfortunately, modal shapes are
more difficult to accurately obtain than frequencies. Moreover,
no information can be gleaned from these natural frequency or
modal shape changes regarding detection of the location of the
damage.
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In the following two sections, available damage ID methods are
utilized fo determine their ability to more robustly isolate the
above damage scenarios.

3. APPLICATION OF THE ‘CHANGE-IN-FLEXIBILITY’
METHOD

3.1 Brief Summary of Method
As explained in [1], the method consists of the following: For the

undamaged structure, the flexibility matrix, [F], is derived from the
modal data a follows:

(7] = [OQ] o7 ~ % !
“@f

DX} . (6)

where - {$} = the ith mass normalized mode shape,
[@] = the mass-normalized mode shape matrix ={¢,, ¢, ..¢,],
;= the ith modal frequency,

[Q} = The modal stiffness matrix = diag. (w,z), and

n = the number of measured or calculated modes.

The approximation in Eq. 6 comes from the fact that typically the
number of modes identified is less than the number of degrees
of freedom needed to accurately represent the motion of the
structure. Similarly, for the damaged structure

[F1] = Q10 = Y —— @), )
i1 (W )

where the asterisks signify properties of the damaged structure.
From the pre- and post- damage flexibility matrices, a measure
of the flexibility change caused by the damage can be obtained
from the difference of the respective matrices, i.e.,

[AF] = [A - [F, (8)

where AF represents the change-in-flexibility matrix. Now, for
each column of matrix AF let §; be the absolute maximum value
of the element in the jth column. Hence,

5 = maxi&yl, i =1, .., n (9)
where S,-j are elements of matrix AF. 5], is taken to be a measure
of the flexibility change at each measurement location. The

column of the flexibility matrix corresponding to the largest O, is
indicative of the degree of freedom where damage is locateé.

3.2 Application of the Method

Imagine now that the modal frequencies and mode shapes,
determined in Section 2 are actually experimental data, In this
case, then, all mode shapes and modal frequencies are known
precisely. Proceeding from this starting point, the ‘change-in-
flexibility’ method is applied.

First, each mode shape of the baseline (undamaged) case is
mass-normalized [10). (Experimentally, this would be
accomplshed by making a driving point response
measurement). The procedure for deternining the mass-
nomalized (“weighted”) modal matrix [@]is to first determine the
generalized masses for each mode. This is done by first forming
the matrix product [W]" [M] (W] where [M] is the original mass
matrix, and [W] denotes the (unweighted) modal matrix
calculated earlier. The diagonal terms of the matrix product
denote the generalized mass, M,. Then each of the columns of
the modal matrix [\V] is divided by the square root of the
appropriate generalized mass, M, resulting in the mass-
nomalized modal matrix [®].

Next, the baseline flexibility matrix, [FB] is determined from
(FBY = [@][Q)'[®)” (10)
and is shown in Table 1.

Table 1. Baseline Flexibility Matrix, FB

1.0 1.0 1.0 10 10 1.0 1.0 1.0]
1.0 2.0 2.0 20 2.0 20 2.0 20
1.0 2.0 3.0 3.0 30 3.0 3.0 30
1.0 2.0 3.0 40 40 40 40 40
10 2.0 3.0 40 50 50 50 50
10 2.0 3.0 40 50 60 60 60
1.0 2.0 3.0 40 50 60 70 70
10 20 30 40 50 60 70 80

The inverse of his matrix is of course identical to the stiffness
matrix calculated from Eq. (3), as a full set of eigenvectors and
eigenvalues were used in generating [FB].

Refermng to Table 1, it is seen that flexibility values, at least along
the main diagonal, increase as one moves away from the fixed
end. This is in agreement with the definition of flexibility
coefficients. For example, a unit force applied to node 8 causes
node 8 to displace 8 times as far as would node 1 when
subjected to a unit force as the springs are in series.

Now the flexibility of each of the 8 perturbed systems (stiffness
reduction of 10-percent) is calculated. Then the matrices of the
differences between the original and the perturbed floxibility
matrices are calculated (Eq. 8) and 6,, Eq. 9, is determined.
Normalized results are presented n Fig. 4 for 10-percent
damage, respectively, in the first, second and third elements. It
is apparent that the detection of damage location is indeed
possble for axial-loading applications and takes on a somewhat
different form than for the beam bending examples discussed in
[6]. For the situation in Fig. 4, damage is present in the element
for which nonzero differences in flexibility first appear. Further,
the magnitude of the damage indicator is independent of
damage location, at least for the particular example considered.

An advantage of the method, when applied to this axially loaded
example, is that the location of damage is directly indicated by a
step change at the point of damage. The method does,
however, require mass-normalized mode shapes.
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3.3 Damage at Multiple Locations

The next issue is that of damage at multiple locations. The case
of damage at DOF 3 and DOF & (a 10-percent reduction in
stifiness at each location) is shown in Fig. 5. Again, the method
isolates both the presence and location of damage. Additional
damage locations are indicated by subsequent step changes in
the damage indicator.

3.4 Influence of Number of Modes Used

For axial (membrane) problems, the influence of the number of
lower modes utilized is illustrated in Fig. 6 for the case of
“damage” (10-percent reduction in stiffness of k,). In Fig. 6, itis
seen that the presence and location of damage is readily
estimated using only the first mode “data” for determining the
change in flexibility.

4. APPLICATION OF THE ‘DAMAGE-INDEX' METHOD

The damage index method, developed by Stubbs and Kim [7],
locates damage in structures undergoing bending vibration given
their characteristic mode shapes measured before and after
damage. For structures undergoing bending, it was found that
only a few modes are required to obtain reliable results.

The method is based on an examination of modal strain energies
in undamaged and damaged beams. It is straightforward to
modify the method to account for axial, as opposed to bending,
vibrations. Following the derivation for beam bending by
Comwell, et al. [11], the bending strain energy for a Bemoulli-
Euler beam is

2
. 2
U:l!’g/ﬂ dx
2 Jo dx?

where El is flexural ngidity ¢ denotes beam length, w is transverse
displacement, and x is the coordinate along the span of the

beam. The corresponding energy expression for axial vibrations
can be written

(1)

1 du\?
v —f AE | —| dx (12)
2 Jo ax

where u(x) denotes the in-plane (axial) displacement field, and
AE denotes the axial rigidity.

Making the appropriate modifications to the derivation by
Comwell, t. al. [11], it is readily shown that the change in axial
rigidity (as opposed to bending rigidity) at the k™ location in the
structure for the ith mode is given by

)2 )2
@yt dLlJ dll"
M i ¢ f
x — dx / —] d.
G _ Lk [ dx} fo dx] X (13)

; . d\ 2 o o 2
gk fa,( 1( _Ur',. dx /, ja _'~l»'i dx
ay dx o dx

where Y, denotes the ith normal mode shape and ( )* denotes
the case of damage. The above expression is an index of the
change i axial rigidity from undamaged to damaged structures.
a, < X < a,,, denotesthe interval along the span, ¢, ofthe & *
region. If the above equation is reapplied for each sub-region
(i.e., element) along the span, a measure of axial rigidity change
along the span for the ith normal mode is produced.

In order to use all measured modes, n, the damage index, o,
forthe & ™ subregion is defined as

o = (14)

The above procedure was implemented for the 8-DOF system
introduced earlier (see Fig. 1). Results are shown in Fig. 7 for
the case in which “damage” was introduced in the third sub-
region (element). Again, the damage consisted of a 10-percent
reduction in stifiness at that location. The location of damage at
sub-region 3 is readily apparent in Fig. 7.

it is important to note that Fig. 7 is constructed utilizing the
complete set of all eight (damaged and undamaged) modes.
Future work will include the evaluation of the method for a
reduced set of lower modes. In addition, the possibility of
multiple damage locations will be investigated with the method.
An advantage of the method is that mass-normalized mode
shapes are not required.

5. SUMMARY AND CONCLUSIONS

Two recently reported structural damage identification methods,
previously developed for structures undergoing flexural
vibrations, were applied to a spring-mass system undergoing
axial response. Both the ‘change-in-flexibility' method and a
modified form of the ‘damage-index’ method were successful in
detecting damage and in locating damaged elements for 10-
percent reduction in element stiffness.

To date, the applicatons of vibration-based damage
identification methods have been primarily focused on relatively
simple structures such as beams and plates [1]. By developing
a lbrary of “damage elements” the authors believe that it may be
possble to construct a methodology of vibration-based damage
identification, analogous to finite element discretization, that can
be more readily applied to general structural and mechanical
systems. The damage index method is particularly well suited for
such development. The development of a truss or membrane
element presented in this work provides the foundation for one
element of such a code. Previous work of Stubbs and Kim [5]
and Comwell [9], provide the development of two additional
elements (beams and plates) for such a code. Further
development will be required for shell and continuum damage
elements. Consideration of the fact that the vibration responses
associated with intemal degrees of freedom (those nodes not
accessible to sensors mounted on the surface of the structure)
are extremely difficult to measure must be addressed in the
development of such a general purpose code. Also, difficulties
associated with measuring rotational degrees of freedom will
have to be addressed.
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The robust damage detection capabilites of the axial (or
membrane) element developed in this study are attributed to
direct measure of mode-shape difference quantities needed in
the application of the methods. Most commonly, translational
degrees of freedom are measured in vibration testing. For axial
or membrane elements, measurements of the translational
degrees of freedom at either end of the member provide a
complete description of the element's flexibility or stored strain
energy. In contrast, to obtain flexibility or strain energy quantities
associated with beam and plate bending, the curvature must be
inferpolated from franslation measurements. The authors
speculate that this interpolation process and the subsequent
differentiation of interpolated quantities when the damage index
method is used leads to errors that can often make the
assessment of damage ambiguous [1].

Future work will include an evaluation of the sensitivity of the
methods to measurement errors which would be present in
actual signals. The viability of the methods for reduced
measurement locations is also a subject of future investigation.
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